SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining

Author:

Akimova Ekaterina123,Gassner Franz Josef12,Schubert Maria12,Rebhandl Stefan12,Arzt Claudia12,Rauscher Stefanie123,Tober Vanessa123,Zaborsky Nadja12,Greil Richard12,Geisberger Roland12ORCID

Affiliation:

1. Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria

2. Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria

3. Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria

Abstract

Abstract Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.

Funder

Province of Salzburg

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3