A new RNA–DNA interaction required for integration of group II intron retrotransposons into DNA targets

Author:

Monachello Dario1,Lauraine Marc1,Gillot Sandra1,Michel François1,Costa Maria1ORCID

Affiliation:

1. Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France

Abstract

Abstract Mobile group II introns are site-specific retrotransposable elements abundant in bacterial and organellar genomes. They are composed of a large and highly structured ribozyme and an intron-encoded reverse transcriptase that binds tightly to its intron to yield a ribonucleoprotein (RNP) particle. During the first stage of the mobility pathway, the intron RNA catalyses its own insertion directly into the DNA target site. Recognition of the proper target rests primarily on multiple base-pairing interactions between the intron RNA and the target DNA, while the protein makes contacts with only a few target positions by yet-unidentified mechanisms. Using a combination of comparative sequence analyses and in vivo mobility assays we demonstrate the existence of a new base-pairing interaction named EBS2a–IBS2a between the intron RNA and its DNA target site. This pairing adopts a Watson–Crick geometry and is essential for intron mobility, most probably by driving unwinding of the DNA duplex. Importantly, formation of EBS2a–IBS2a also requires the reverse transcriptase enzyme which stabilizes the pairing in a non-sequence-specific manner. In addition to bringing to light a new structural device that allows subgroup IIB1 and IIB2 introns to invade their targets with high efficiency and specificity our work has important implications for the biotechnological applications of group II introns in bacterial gene targeting.

Funder

Comité de L’Essonne de la Ligue Nationale Contre le Cancer

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3