Protein-Free Catalysis of DNA Hydrolysis and Self-Integration by a Ribozyme

Author:

Szokoli Deni,Mutschler HannesORCID

Abstract

AbstractGroup II introns are ancient self-splicing ribozymes and retrotransposons. Though long speculated to have originated before translation, their dependence on intron-encoded proteins for splicing and mobility has cast doubt on this hypothesis. While some group II introns are known to retain part of their catalytic repertoire in the absence of protein cofactors, protein-free complete reverse splicing of a group II intron into a DNA target has never been demonstrated. Here, we demonstrate the complete independence of a group II intron from protein cofactors in all intron-catalyzed reactions. The ribozyme is capable of fully reverse splicing into single-stranded DNA targetsin vitro, readily hydrolyzes DNA substrates, and is even able to unwind and react with stably duplexed DNA. Our findings make a protein-free origin for group II introns plausible by expanding their known catalytic capabilities beyond what would be needed to survive the transition from RNA to DNA genomes. Furthermore, the intron’s capacity to react with both single and double-stranded DNA in conjunction with its expanded sequence recognition may represent a promising starting point for the development of protein-free genomic editing tools.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3