Ribosome-binding and anti-microbial studies of the mycinamicins, 16-membered macrolide antibiotics from Micromonospora griseorubida

Author:

Breiner-Goldstein Elinor1,Eyal Zohar1ORCID,Matzov Donna1ORCID,Halfon Yehuda1,Cimicata Giuseppe1,Baum Moti2,Rokney Assaf2,Ezernitchi Analia V2,Lowell Andrew N3,Schmidt Jennifer J3,Rozenberg Haim1,Zimmerman Ella1,Bashan Anat1ORCID,Valinsky Lea2,Anzai Yojiro4,Sherman David H3,Yonath Ada1

Affiliation:

1. Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel

2. Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel

3. Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA

4. Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-0072, Japan

Abstract

Abstract Macrolides have been effective clinical antibiotics for over 70 years. They inhibit protein biosynthesis in bacterial pathogens by narrowing the nascent protein exit tunnel in the ribosome. The macrolide class of natural products consist of a macrolactone ring linked to one or more sugar molecules. Most of the macrolides used currently are semi-synthetic erythromycin derivatives, composed of a 14- or 15-membered macrolactone ring. Rapidly emerging resistance in bacterial pathogens is among the most urgent global health challenges, which render many antibiotics ineffective, including next-generation macrolides. To address this threat and advance a longer-term plan for developing new antibiotics, we demonstrate how 16-membered macrolides overcome erythromycin resistance in clinically isolated Staphylococcus aureus strains. By determining the structures of complexes of the large ribosomal subunit of Deinococcus radiodurans (D50S) with these 16-membered selected macrolides, and performing anti-microbial studies, we identified resistance mechanisms they may overcome. This new information provides important insights toward the rational design of therapeutics that are effective against drug resistant human pathogens.

Funder

University of Michigan-Israel Partnership for Research

European Research Council

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference60 articles.

1. Platforms for antibiotic discovery;Lewis;Nat. Rev. Drug Discov.,2013

2. The future challenges facing the development of new antimicrobial drugs;Coates;Nat. Rev. Drug Discov.,2002

3. Ribosomal antibiotics: contemporary challenges;Auerbach-Nevo;Antibiotics,2016

4. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR;Crowe-McAuliffe;Proc. Natl. Acad. Sci. U.S.A.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3