Characterization of six recombinant human RNase H2 bearing Aicardi-Goutiéres syndrome causing mutations

Author:

Nishimura Takuto1,Baba Misato1,Ogawa Saori1,Kojima Kenji1,Takita Teisuke1,Crouch Robert J2,Yasukawa Kiyoshi1

Affiliation:

1. Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan

2. Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

Abstract Mammalian RNase H2 is a heterotrimeric enzyme consisting of one catalytic subunit (A) and two accessory subunits (B and C). RNase H2 is involved in the removal of a single ribonucleotide embedded in genomic DNA and removal of RNA of RNA/DNA hybrids. In humans, mutation of the RNase H2 gene causes a severe neuroinflammatory disorder Aicardi-Goutières syndrome (AGS). Here, we examined the activity and stability of six recombinant human RNase H2 variants bearing one AGS-causing mutation, A-G37S (Gly37 in the A subunit is replaced with Ser), A-N212I, A-R291H, B-A177T, B-V185G, or C-R69W. The activity of A-G37S was 0.3–1% of that of the wild-type RNase H2 (WT), while those of other five variants were 51–120%. In circular dichroism measurement, the melting temperatures of variants were 50–53°C, lower than that of WT (56°C). These results suggested that A-G37S had decreased activity and stability than WT, while other five variants had decreased stability but retained activity. In gel filtration chromatography of the purified enzyme preparation, WT migrated as a heterotrimer, while A-R291H eluted in two separate peaks containing either the heterotrimer or only the A subunit, suggesting that some AGS-causing mutations affect the heterotrimer-forming stability of RNase H2.

Funder

Grants-in-Aid for Scientific Research

Japan Society for the Promotion of Science

Salt Science Research Foundation

NICHD

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3