Analysis of ribonucleotide content in the genomic DNA of ribonuclease H2 A subunit (RH2A)-knockout NIH3T3 cells after transient expression of wild-type RH2A or RH2A variants with an Aicardi–Goutières syndrome-causing mutation

Author:

Kandabashi Mako1,Yano Haruna1,Hara Haruka1,Ogawa Saori1,Kamoda Kana1,Ishibashi Shu1,Himeda Kohei1,Baba Misato1,Takita Teisuke1,Yasukawa Kiyoshi1

Affiliation:

1. Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Abstract

Abstract Ribonuclease (RNase) H2 is involved in the removal of ribonucleotides embedded in genomic DNA. Eukaryotic RNase H2 is a heterotrimer consisting of the catalytic A subunit (RH2A) and the accessory B and C subunits. This study aimed to compare the cellular activities of wild-type ribonuclease (RNase) H2 and its variants with a mutation causing neuroinflammatory autoimmune disease, Aicardi–Goutières syndrome (AGS). We first analyzed cellular RNase H2 activity and ribonucleotide content in the genomic DNA of RH2A-knockout (KO) mouse fibroblast NIH3T3 cells after transfection with a transient expression plasmid encoding mouse wild-type RH2A. From 4 h after transfection, the RNase H2 activity increased and the amount of ribonucleotides decreased, as compared with the corresponding non-transfected RH2A-KO cells. This demonstrated the rapidness of ribonucleotide turnover in mammalian genomic DNA and the importance of continuous expression of RNase H2 to maintain the ribonucleotide amount low. Next, we expressed mouse RH2A variants with a mutation corresponding to a human AGS-causing mutation in RH2A-KO NIH3T3 cells. Neither increase in RNase H2 activity nor decrease in ribonucleotide amount was observed for G37S; however, both conditions were observed for N213I and R293H. This corresponded with our previous results on the activity of recombinant human RNase H2 variants.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction and characterization of ribonuclease H2 C subunit-knockout NIH3T3 cells;Bioscience, Biotechnology, and Biochemistry;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3