Investigation of the transport and metabolic patterns of oil-displacing bacterium FY-07-G in the microcosm model using X-CT technology

Author:

Zhao Xueqing1,Liao Zitong1,Liu Tongtong1,Cheng Wei1,Gao Ge1,Yang Mingbo1,Ma Ting12,Li Guoqiang12

Affiliation:

1. Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071 , China

2. Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials,College of Life Sciences, Nankai University , Tianjin 300071 , China

Abstract

Abstract Aims Microbial enhanced oil recovery (MEOR) is dedicated to enhancing oil recovery by harnessing microbial metabolic activities and their byproducts within reservoir rocks and fluids. Therefore, the investigation of microbial mobility and their extensive distribution within crude oil is of paramount importance in MEOR. While microscale models have been valuable for studying bacterial strain behavior in reservoirs, they are typically limited to 2D representations of porous media, making them inadequate for simulating actual reservoir conditions. Consequently, there is a critical need for 3D models and dependable visualization methods to observe bacterial transport and metabolism within these complex reservoir environments. Methods and results Bacterial cellulose (bc) is a water-insoluble polysaccharide produced by bacteria that exhibits biocompatibility and biodegradability. It holds significant potential for applications in the field of MEOR as an effective means for selective plugging and spill prevention during oil displacement processes. Conditionally cellulose-producing strain, FY-07-G, with green fluorescent labeling, was engineered for enhanced oil recovery. 3D micro-visualization model was constructed to directly observe the metabolic activities of the target bacterial strain within porous media and to assess the plugging interactions between cellulose and the medium. Additionally, X-ray computed tomography (X-CT) technology was employed for a comprehensive analysis of the transport patterns of the target strain in oil reservoirs with varying permeabilities. The results indicated that FY-07-G, as a microorganism employing biopolymer-based plugging principles to enhance oil recovery, selectively targets and seals regions characterized by lower permeability and smaller pore spaces. Conclusions This work provided valuable insights into the transport and metabolic behavior of MEOR strains and tackled the limitation of 2D models in faithfully replicating oil reservoir conditions, offering essential theoretical guidance and insights for the further application of oil-displacing bacterial strains in MEOR processes.

Funder

National Natural Science Foundation of China

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3