Characteristics of the Fracture Process Zone for Reservoir Rock with Various Heterogeneity

Author:

Chen HongranORCID,Niu Jingrui,Zhai Mengyang

Abstract

Hydraulic fracturing for oil-gas and geothermal reservoir stimulation is closely related to the propagation of Mode I crack. Nonlinear deformation due to rock heterogeneity occurs at such crack tips, which causes the fracture process zone (FPZ) to form before the crack propagates unsteadily. However, the relationship between the FPZ characteristics and rock heterogeneity still remains elusive. We used three rock types common in reservoirs for experimental investigation, and each of them includes two subtypes with different heterogeneity due to grain size or microstructural characteristics. Drawing on the experiment results, we calculated the FPZ size (represented by the radius of an assumed circular FPZ) in each cracked chevron-notched Brazilian disk, and we reproduced the formation process of the FPZ in marble using the discrete element method. We showed that strong heterogeneity is favorable to large FPZ size, can enhance the ability of crack generation and make crack morphology complex. Coupling the Weibull distribution with fracture mechanics, the dependence of the FPZ size on heterogeneity degree can be theoretically explained, which suggests that the inherent heterogeneity of rocks sets the physical foundation for formation of FPZs. These findings can improve our recognition of propagation mechanisms of Mode I cracking and provide useful guidelines for evaluating reservoir fracability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3