Four novel Cit7GlcTs functional in flavonoid 7-O-glucoside biosynthesis are vital to flavonoid biosynthesis shunting in citrus

Author:

Yuan Ziyu12,Li Gu12,Zhang Huixian12,Peng Zhaoxin1,Ding Wenyu1,Wen Huan1,Zhou Hanxin1,Zeng Jiwu3,Chen Jiajing12,Xu Juan12

Affiliation:

1. Huazhong Agricultural University National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, , Wuhan 430070, China

2. Hubei Hongshan Laboratory , Wuhan 430070, China

3. Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences Key Laboratory of South Subtropical Fruit Biology and Genetic Resource, , Guangzhou 510640, China

Abstract

Abstract Citrus fruits have abundant flavonoid glycosides (FGs), an important class of natural functional and flavor components. However, there have been few reports about the modification of UDP-glycosyltransferases (UGTs) on flavonoids in citrus. Notably, in flavonoid biosynthesis, 7-O-glucosylation is the initial and essential step of glycosylation prior to the synthesis of flavanone disaccharides, the most abundant and iconic FGs in citrus fruits. Here, based on the accumulation of FGs observed at the very early fruit development stage of two pummelo varieties, we screened six novel flavonoid 7-O-glucosyltransferase genes (7GlcTs) via transcriptomic analysis and then characterized them in vitro. The results revealed that four Cg7GlcTs possess wide catalytic activities towards various flavonoid substrates, with CgUGT89AK1 exhibiting the highest catalytic efficiency. Transient overexpression of CgUGT90A31 and CgUGT89AK1 led to increases in FG synthesis in pummelo leaves. Interestingly, these two genes had conserved sequences and consistent functions across different germplasms. Moreover, CitUGT89AK1 was found to play a role in the response of citrus to Huanglongbing infection by promoting FG production. The findings improve our understanding of flavonoid 7-O-glucosylation by identifying the key genes, and may help improve the benefits of flavonoid biosynthesis for plants and humans in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3