Sea Turtle Population Genomic Discovery: Global and Locus-Specific Signatures of Polymorphism, Selection, and Adaptive Potential

Author:

Chow Julie C1,Anderson Paul E23,Shedlock Andrew M456

Affiliation:

1. Integrative Genetics and Genomics Graduate Group, University of California, Davis

2. Department of Computer Science, College of Charleston, Charleston, South Carolina

3. Department of Computer Science and Software Engineering, California Polytechnic State University, San Luis Obispo, CA 93407

4. Department of Biology, College of Charleston, Charleston, South Carolina

5. College of Graduate Studies, Medical University of South Carolina

6. Marine Genomics Division, Hollings Marine Laboratory, Charleston, South Carolina

Abstract

AbstractIn the era of genomics, single-nucleotide polymorphisms (SNPs) have become a preferred molecular marker to study signatures of selection and population structure and to enable improved population monitoring and conservation of vulnerable populations. We apply a SNP calling pipeline to assess population differentiation, visualize linkage disequilibrium, and identify loci with sex-specific genotypes of 45 loggerhead sea turtles (Caretta caretta) sampled from the southeastern coast of the United States, including 42 individuals experimentally confirmed for gonadal sex. By performing reference-based SNP calling in independent runs of Stacks, 3,901–6,998 SNPs and up to 30 potentially sex-specific genotypes were identified. Up to 68 pairs of loci were found to be in complete linkage disequilibrium, potentially indicating regions of natural selection and adaptive evolution. This study provides a valuable SNP diagnostic workflow and a large body of new biomarkers for guiding targeted studies of sea turtle genome evolution and for managing legally protected nonmodel iconic species that have high economic and ecological importance but limited genomic resources.

Funder

Illumina sequencing technology

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3