Chromosome-level genome assembly and methylome profile enables insights for the conservation of endangered loggerhead sea turtles

Author:

Yen Eugenie C.ORCID,Gilbert James D.,Balard Alice,Taxonera Albert,Fairweather Kirsten,Ford Heather L.,Thorburn Doko-Miles J.,Rossiter Stephen J.,Martín-Durán José M.ORCID,Eizaguirre Christophe

Abstract

ABSTRACTBackgroundCharacterising genetic and epigenetic diversity is crucial for assessing the adaptive potential of populations and species. Slow-reproducing and already threatened species, including endangered sea turtles, are particularly at risk. Those species with temperature-dependent sex determination (TSD) have heightened climate vulnerability, with sea turtle populations facing feminisation and extinction under future climate change. High- quality genomic and epigenomic resources will therefore support conservation efforts for these flagship species with such plastic traits.FindingsWe generated a chromosome-level genome assembly for the loggerhead sea turtle (Caretta caretta) from the globally important Cabo Verde rookery. Using Oxford Nanopore Technology (ONT) and Illumina reads followed by homology-guided scaffolding, we achieved a contiguous (N50: 129.7 Mbp) and complete (BUSCO: 97.1%) assembly, with 98.9% of the genome scaffolded into 28 chromosomes and 29,883 annotated genes. We then extracted the ONT-derived methylome and validated it via whole genome bisulfite sequencing of ten loggerheads from the same population. Applying our novel resources, we reconstructed population size fluctuations and matched them with major climatic events and niche availability. We identified microchromosomes as key regions for monitoring genetic diversity and epigenetic flexibility. Isolating 191 TSD-linked genes, we further built the largest network of functional associations and methylation patterns for sea turtles to date.ConclusionsWe present a high-quality loggerhead sea turtle genome and methylome from the globally significant East Atlantic population. By leveraging ONT sequencing to create genomic and epigenomic resources simultaneously, we showcase this dual strategy for driving conservation insights into endangered sea turtles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3