Affiliation:
1. Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia
2. National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, China
Abstract
Abstract
Local adaptation to climate allows plants to cope with temporally and spatially heterogeneous environments, and parallel phenotypic clines provide a natural experiment to uncover the genomic architecture of adaptation. Though extensive effort has been made to investigate the genomic basis of local adaptation to climate across the latitudinal range of tree species, less is known for altitudinal clines. We used exome capture to genotype 451 Populus trichocarpa genotypes across altitudinal and latitudinal gradients spanning the natural species range, and phenotyped these trees for a variety of adaptive traits in two common gardens. We observed clinal variation in phenotypic traits across the two transects, which indicates climate-driven selection, and coupled gene-based genotype–phenotype and genotype–environment association scans to identify imprints of climatic adaptation on the genome. Although many of the phenotype- and climate-associated genes were unique to one transect, we found evidence of parallelism between latitude and altitude, as well as significant convergence when we compared our outlier genes with those putatively involved in climatic adaptation in two gymnosperm species. These results suggest that not only genomic constraint during adaptation to similar environmental gradients in poplar but also different environmental contexts, spatial scale, and perhaps redundant function among potentially adaptive genes and polymorphisms lead to divergent adaptive architectures.
Funder
NSF Plant Genome Research Program
National Institute of Food and Agriculture
Publisher
Oxford University Press (OUP)
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献