Endophyte-Mediated Populus trichocarpa Water Use Efficiency Is Dependent on Time of Day and Plant Water Status

Author:

Banan Darshi1ORCID,Sher Andrew W.1ORCID,Tournay Robert J.1ORCID,Doty Sharon L.1ORCID,Kim Soo-Hyung1ORCID

Affiliation:

1. School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA

Abstract

Endophytes are potential partners for improving the resource use efficiency of bioenergy feedstock systems such as short rotation coppice Populus species. Endophytes isolated from members of the Salicaceae family have broad host compatibility and can improve water use efficiency (WUE) through decreases in stomatal conductance. However, the literature is inconsistent with regard to the environmental conditions and temporal patterns of these benefits. This study investigated how endophyte-mediated changes in Populus trichocarpa ‘Nisqually-1’ stomatal conductance and WUE shift with time and scale in response to water deficit stress. Leaf gas exchange and aboveground productivity were used to evaluate the carbon and water balance of greenhouse-grown plants in response to endophyte inoculation and water deficit. Differences in stomatal conductance between control and inoculated plants were more pronounced (39.7% decrease, Welch two-sample t [14.34 adjusted degrees of freedom] = –2.358, P = 0.033) under water deficit conditions in the late morning during a period of higher light intensity. The decrease in stomatal conductance accompanied a substantial increase in intrinsic WUE (iWUE) for water deficit inoculated plants. However, increases in iWUE did not result in improvements in aboveground productivity or shoot biomass WUE for water deficit inoculated plants. This decoupling between iWUE and aboveground productivity may be an indicator of assimilate allocation to microbial metabolism as an additional carbon sink or a shift in carbon allocation toward belowground biomass. Future work should take a whole plant approach that accounts for diurnal patterns in incident irradiance to evaluate the impact of endophyte inoculation on host WUE and stress tolerance.

Funder

DOE Office of Science, Office of Biological and Environmental Research

Publisher

Scientific Societies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3