Establishment and Characterization of Bacterial Infection of Breast Implants in a Murine Model

Author:

Walker Jennifer N1,Poppler Louis H1,Pinkner Chloe L1,Hultgren Scott J1,Myckatyn Terence M1

Affiliation:

1. Washington University School of Medicine, St Louis, MO

Abstract

Abstract Background Staphylococcus epidermidis and Pseudomonas aeruginosa are the most common causes of Gram-positive and Gram-negative breast implant–associated infection. Little is known about how these bacteria infect breast implants as a function of implant surface characteristics and timing of infection. Objectives The aim of this work was to establish a mouse model for studying the impact of various conditions on breast implant infection. Methods Ninety-one mice were implanted with 273 breast implant shells and infected with S. epidermidis or P. aeruginosa. Smooth, microtextured, and macrotextured breast implant shells were implanted in each mouse. Bacterial inoculation occurred during implantation or 1 day later. Implants were retrieved 1 or 7 days later. Explanted breast implant shells were sonicated, cultured, and colony-forming units determined or analyzed with scanning electron microscopy. Results P. aeruginosa could be detected on all device surfaces at 1- and 7- days post infection (dpi), when mice were implanted and infected concurrently or when they were infected 1- day after implantation. However, P. aeruginosa infection was more robust on implant shells retrieved at 7 dpi and particularly on the macrotextured devices that were infected 1 day post implantation. S. epidermidis was mostly cleared from implants when mice were infected and implanted concurrently. Other the other hand, S. epidermidis could be detected on all device surfaces at 1 dpi and 2 days post implantation. However, S. epidermdis infection was suppressed by 7 dpi and 8 days post implantation. Conclusions S. epidermidis required higher inoculating doses to cause infection and was cleared within 7 days. P. aeruginosa infected at lower inoculating doses, with robust biofilms noted 7 days later.

Funder

Aesthetic Surgery Education Research Foundation

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3