Neogene Metasomatism in the Subcontinental Lithosphere beneath SE Asia—Evidence from Modal and Cryptic Phosphorus Enrichment in Peridotites and Pyroxenites from Southern Laos

Author:

Konzett Jürgen1,Hauzenberger Christoph2,Krenn Kurt2,Joachim-Mrosko Bastian1,Stalder Roland1,Gröbner Katharina13,Sieberer Anna-Katharina14,Hoang Nguyen5,Khoi Nguyen Ngoc6

Affiliation:

1. Institute of Mineralogy and Petrology, University of Innsbruck, Innrain 52, Innsbruck A-6020, Austria

2. Department of Earth Sciences, University of Graz, Universitätsplatz 2, Graz A-8010, Austria

3. Tyrolean Geological Survey, Herrengasse 3, A-6020 Innsbruck, Austria

4. Institute of Geology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

5. Institute of Geological Sciences, Vietnam Academy of Science & Technology, 84 Chua Lang, Dong Ha, Hanoi, Vietnam

6. Department of Geochemistry, Hanoi University of Science, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam

Abstract

Abstract Metasomatism is the prime process to create compositional heterogeneity of the upper mantle. Mineralogical and mineral chemical changes of the mantle triggered by metasomatism can be used to deduce the nature of the metasomatic agent(s) and to constrain the timing of metasomatism. This information is vital for an understanding of the secular evolution of a given mantle segment and the magmatic processes occurring therein. For this study spinel-lherzolites and -websterites were collected from ∼16 Myr old alkali-basaltic lava flows that were extruded on the Bolaven Plateau in south–central Laos. These xenoliths are fragments of the shallow continental lithosphere of the SE Asian peninsula and originate from a mantle segment that acted as source for Cenozoic basaltic volcanism in the wake of the India–Asia collision. In both rock types modal metasomatism formed apatite ± whitlockite ± phlogopite ± calcic amphibole ± calcite ± orthopyroxene. The principal metasomatic phase is apatite, which appears in three varieties. Type-I apatite is ±inclusion-free and associated with phlogopite, calcic amphibole, calcite and lamellar orthopyroxene. It is high in Na and low in P and shows low analytical totals indicating a type-B carbonate–apatite component. Type-I apatite presumably precipitated from a P-alkali-rich mixed H2O–CO2 fluid with low large ion lithophile element (LILE)–light rare earth element (LREE) contents. Type-II apatite shows a spongy texture and has lower Na and higher P contents with higher analytical totals. Crosscutting discontinuous zones of type-II characteristics within type-I apatites indicate type-II formation through an exchange Na+ + CO32– = PO43– + Ca2+ by a later fluid with lower aCO2. REE-rich type-III apatite is the youngest type and formed by infiltration of basaltic melts as part of spongy rims around clinopyroxene. One lherzolite contains whitlockite in addition to apatite. Whitlockite formation is ascribed to a short-lived metasomatic event involving a fluid with extremely low aH2O. Disequilibrium between whitlockite and the bulk assemblage is indicated by hydrous silicates in the immediate vicinity of whitlockite and by substantial H2O contents of 250–370 µg g–1 in clinopyroxenes and 170–190 µg g–1 in orthopyroxenes. High-density (1·15–≥1·17 g m–3) CO2–fluid inclusions in the whitlockite-bearing sample provide evidence for the presence of low-aH2O fluids at mantle depths. The spinel-herzolites may also show cryptic metasomatism evidenced by P zoning in olivine, which is characterized by P-poor (<20–130 µg g–1) cores and P-rich (170–507 µg g–1) rims, the latter in part with oscillatory zoning on a µm scale. Element correlations indicate [4]Si4+ + [6](Mg, Fe)2+ = [4]P5+ + [6]Li+, 2 [4]Si4+ + 4 [6](Mg, Fe)2+ = 2 [4]P5+ + 3 [6](Mg, Fe)2+ + [6]vac and/or 5 [4]Si4+ = 4 [4]P5+ + [4]vac as major P incorporation mechanisms. High P–T experiments conducted at 2 GPa and 950–1050 °C yield apatite-saturated P contents of olivine in the range ∼360–470 µg g–1. Most P concentrations in olivines from the xenoliths including those in the P-rich rims, however, are significantly lower than the apatite-saturated values, which indicates disequilibrium uptake of P during growth of the P-rich rims by dissolution–reprecipitation. Diffusion modeling indicates that the P zoning must have formed within decades prior to the eruption of the host basalts. This is consistent with the preservation of Li disequilibrium partitioning between olivine and pyroxenes in some of the xenoliths. All metasomatic phenomena were assigned to two metasomatic events, both of which were in close temporal relation with the eruption of the xenolith host basalts: an older event-1 formed type-I apatite, hydrous silicates, calcite and orthopyroxene and caused the modification of type-I apatite composition towards that of type-II. It is also likely to be responsible for whitlockite formation and P zoning in olivine. A younger event-2 comprises all paragenetic, textural and compositional modifications of the xenolith assemblages associated with the infiltration of basaltic melts.

Funder

ASEAN–European Academic University Network

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3