Brown Amphibole as Tracer of Tectono-Magmatic Evolution of the Atlantis Bank Oceanic Core Complex (IODP Hole U1473A)

Author:

Ferrando Carlotta1,Tribuzio Riccardo12,Lissenberg C Johan3,France Lydéric45ORCID,MacLeod Christopher J3,Basch Valentin2,Villeneuve Johan4,Deloule Etienne4,Sanfilippo Alessio12ORCID

Affiliation:

1. Università di Pavia Dipartimento di Scienze della Terra e dell'Ambiente, , I-27100 Pavia, Italy

2. CNR, Unità di Pavia Istituto Geoscienze e Georisorse, , I-27100 Pavia, Italy

3. Cardiff University School of Earth and Ocean Sciences, , CF103AT Cardiff, UK

4. CNRS, CRPG, Université de Lorraine , F-54000 Nancy, France

5. Institut Universitaire de France (IUF) , France

Abstract

Abstract Brown amphibole is a minor but common mineral component in lower oceanic crust. It is generally interpreted as products of migrating SiO2 and H2O-rich fluids or melts, which can be either residual melts from advanced magmatic differentiation of Mid-Ocean Ridge Basalt (MORB), or hydrothermal fluids including a seawater component. Within the lower oceanic crust exhumed at the Atlantis Bank Oceanic Core Complex, along the ultraslow Southwest Indian Ridge, brown amphibole is ubiquitous in all lithologies from olivine- to oxide-gabbros and diorites, including both undeformed and plastically deformed varieties. We here show the results of a systematic petrological study conceived to unravel the nature of the H2O-rich component recorded in brown amphiboles and document: (i) the evolution of migrating melts during the magmatic stage and (ii) different extents of melt-bearing deformation events recorded throughout the entire crustal transect. The low Cl contents and the light over heavy rare earth elements (LREE/HREE) ratios and high Ti contents in brown amphiboles indicate they crystallized from melts with a magmatic hydrous component. Consistently, their δ18O values are in equilibrium with Mid-Ocean Ridge Basalt (MORB) composition, except for diorite amphiboles that possibly record the local assimilation of altered minerals. In undeformed olivine gabbros, interstitial pargasite crystallized at hypersolidus conditions (~1000°C) from the melt residual after late stages of MORB differentiation. We speculate that before the olivine gabbro crystal mush reached fully solid state, some aliquots of residual melts were extracted and accumulated within discrete intervals. There, ferrobasaltic melts differentiated through the early crystallization of Fe-Ti oxides and clinopyroxene as liquidus phases, ultimately forming the oxide gabbros. This process promoted rapid Si enrichment and depletion in Fe, Ti, V in the residual melt, later extracted to form the crosscutting diorite veins. The mylonitic olivine gabbros record high-temperature plastic deformation (~900°C ± 50°C) under hypersolidus conditions, involving melts residual from previous crystallization of the gabbroic rock. Further solid-state plastic deformation led to substantial grain size reduction and, consequently, to an increase in porosity. This created pathways for subsequent melt focusing, which likely represent late-stage differentiated melts migrating throughout the lower crustal section. This study shows that brown amphibole in the Atlantis Bank lower oceanic crust is the crystallization product of melts residual from advanced magmatic differentiation, which are also locally involved in the plastic deformation events during crustal accretion.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3