Intracrystalline melt migration in deformed olivine revealed by trace element compositions and polyphase solid inclusions

Author:

Basch Valentin,Drury Martyn R.ORCID,Plumper Oliver,Hellebrand Eric,Crispini LauraORCID,Barou Fabrice,Godard MargueriteORCID,Rampone Elisabetta

Abstract

Abstract. Melt transport mechanisms have an important impact on the chemical composition of the percolated host rock and the migrating melts. Melt migration is usually assumed to occur at grain boundaries. However, microstructural studies revealed the occurrence of polyphase inclusions along dislocations, subgrain boundaries and microcracks in single mineral grains. The inclusions are interpreted as crystallized melt pockets suggesting that melts can migrate within deformed crystals. Intracrystalline melt migration and diffusive re-equilibration can lead to significant mineral trace element enrichments when associated with dissolution–precipitation reactions. In this contribution, we study a body of replacive troctolites associated with the Erro-Tobbio ophiolitic mantle peridotites (Ligurian Alps, Italy). The replacive formation of the olivine-rich troctolite involved extensive impregnation of a dunitic matrix, i.e. partial dissolution of olivine and concomitant crystallization of interstitial phases. The olivine matrix is characterized by two distinct olivine textures: (i) coarse deformed olivine, representing relicts of the pre-existing mantle dunite matrix (olivine1), and (ii) fine-grained undeformed olivine, a product of the melt–rock interaction process (olivine2). Previous studies documented a decoupling between olivine texture and trace element composition, namely enriched trace element compositions in olivine1 rather than in olivine2, as would be expected from the dissolution–precipitation process. Notably, the trace element enrichments in deformed olivines are correlated with the occurrence of elongated 10 µm size polyphase inclusions (clinopyroxene, Ti-pargasite, chromite) preferentially oriented along olivine crystallographic axes. These inclusions show irregular contacts and have no crystallographic preferred orientation with the host olivine, and the phases composing the inclusions show similar chemical compositions to the vermicular phases formed at the grain boundaries during late-stage reactive crystallization of the troctolite. This suggests that the investigated inclusions did not form as exsolutions of the host olivine but rather by input of metasomatic fluids percolating through the deformed olivine grains during closure of the magmatic system. We infer that strongly fractionated volatile-rich melts were incorporated in oriented microfractures within olivine1 and led to the crystallization of the polyphase inclusions. The presence of intracrystalline melt greatly enhanced diffusive re-equilibration between the evolved melt and the percolated olivine1, in turn acquiring the enriched character expected in neoformed olivine crystals. Intracrystalline melt percolation can have strong geochemical implications and can lead to efficient re-equilibration of percolated minerals and rocks.

Funder

FP7 People: Marie-Curie Actions

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3