Accretion of the Lower Oceanic Crust at Fast-Spreading Ridges: Insights from Hess Deep (East Pacific Rise, IODP Expedition 345)

Author:

Basch Valentin12,Sanfilippo Alessio12ORCID,Snow Jonathan E3,Loocke Matthew3ORCID,Zanetti Alberto2

Affiliation:

1. University of Pavia Department of Earth and Environmental Sciences, , Via Ferrata 1, 27100 Pavia, Italy

2. Institute of Geoscience and Earth Resources Consiglio Nazionale delle Ricerche, , Via Ferrata 1, 27100 Pavia, Italy

3. Louisiana State University Geology & Geophysics Department, , E235 Howe Russell Kniffen, Baton Rouge, LA 70803 USA

Abstract

Abstract At mid-ocean ridges, melts that formed during adiabatic melting of a heterogeneous mantle migrate upwards and ultimately crystallize the oceanic crust. The lower crustal gabbros represent the first crystallization products of these melts and the processes involved in the accretion of the lowermost crust drive the chemical evolution of the magmas forming two thirds of Earth’s surface. At fast-spreading ridges, elevated melt supply leads to the formation of a ⁓6-km-thick layered oceanic crust. Here, we provide a detailed petrochemical characterization of the lower portion of the fast-spread oceanic crust drilled during IODP Expedition 345 at the East Pacific Rise (IODP Holes U1415), together with the processes involved in crustal accretion. The recovered gabbroic rocks are primitive in composition and range from troctolites to olivine gabbros, olivine gabbronorites and gabbros. Although textural evidence of dissolution-precipitation processes is widespread within this gabbroic section, only the most interstitial phases record chemical compositions driven by melt-mush interaction processes during closure of the magmatic system. Comparing mineral compositions from this lower crustal section with its slow-spreading counterparts, we propose that the impact of reactive processes on the chemical evolution of the parental melts is dampened in the lower gabbros from magmatically productive spreading centres. Oceanic accretion thereby seems driven by fractional crystallization in the lower gabbroic layers, followed by upward reactive percolation of melts towards shallower sections. Using the composition of clinopyroxene from these primitive, nearly unmodified gabbros, we estimate the parental melt trace element compositions of Hess Deep, showing that the primary melts of the East Pacific Rise are more depleted in incompatible trace elements compared to those formed at slower spreading rates, as a result of higher melting degrees of the underlying mantle.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3