Clinopyroxene/Melt Trace Element Partitioning in Sodic Alkaline Magmas

Author:

Beard Charles D12ORCID,van Hinsberg Vincent J2,Stix John2,Wilke Max34

Affiliation:

1. British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK

2. Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Québec H3A 0E8, Canada

3. Institut für Geowissenschaften, Universität Potsdam, Golm, Germany

4. Chemie und Physik der Geomaterialien, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany

Abstract

Abstract Clinopyroxene is a key fractionating phase in alkaline magmatic systems, but its impact on metal enrichment processes, and the formation of REE + HFSE mineralisation in particular, is not well understood. To constrain the control of clinopyroxene on REE + HFSE behaviour in sodic (per)alkaline magmas, a series of internally heated pressure vessel experiments was performed to determine clinopyroxene–melt element partitioning systematics. Synthetic tephriphonolite to phonolite compositions were run H2O-saturated at 200 MPa, 650–825°C with oxygen fugacity buffered to log f O2 ≈ ΔFMQ + 1 or log f O2 ≈ ΔFMQ +5. Clinopyroxene–glass pairs from basanitic to phonolitic fall deposits from Tenerife, Canary Islands, were also measured to complement our experimentally-derived data set. The REE partition coefficients are 0·3–53, typically 2–6, with minima for high-aegirine clinopyroxene. Diopside-rich clinopyroxene (Aeg5–25) prefer the MREE and have high REE partition coefficients (DEu up to 53, DSm up to 47). As clinopyroxene becomes more Na- and less Ca-rich (Aeg25–50), REE incorporation becomes less favourable, and both the VIM1 and VIIIM2 sites expand (to 0·79 Å and 1·12 Å), increasing DLREE/DMREE. Above Aeg50 both M sites shrink slightly and HREE (VIri ≤ 0·9 Å ≈ Y) partition strongly onto the VIM1 site, consistent with a reduced charge penalty for REE3+ ↔ Fe3+ substitution. Our data, complemented with an extensive literature database, constrain an empirical model that predicts trace element partition coefficients between clinopyroxene and silicate melt using only mineral major element compositions, temperature and pressure as input. The model is calibrated for use over a wide compositional range and can be used to interrogate clinopyroxene from a variety of natural systems to determine the trace element concentrations in their source melts, or to forward model the trace element evolution of tholeiitic mafic to evolved peralkaline magmatic systems.

Funder

Geotop

Diversification de l’exploration minérale au Québec

DIVEX

Society of Economic Geologists Canada Foundation

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec - Nature et technologies

FRQNT

HiTech AlkCarb project

European Union Horizon

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3