Giant Rare Earth Element Accumulation Related to Voluminous, Highly Evolved Carbonatite: A Microanalytical Study of Carbonate Minerals From the Bayan Obo Deposit, China

Author:

Li Xiao-Chun12,Fan Hong-Rui12,Su Jian-Hui3,Groves David I.4,Yang Kui-Feng12,Zhao Xin-Fu3

Affiliation:

1. 1 Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 3 School of Earth Resources, China University of Geosciences, Wuhan 430074, China

4. 4 Centre for Exploration Targeting, University of Western Australia, Nedlands, 6009, Australia

Abstract

Abstract The giant Bayan Obo deposit in China represents the largest rare earth element (REE) resource in the world, but the mechanisms for its highly anomalous REE enrichment have long been controversial. The central debate concerns the nature and origin of the ore-hosting dolomite. In this study, a texturally constrained microanalytical study of carbonate minerals from the Bayan Obo ore-hosting dolomite is presented to resolve this controversy. The dolomite rocks contain two major components: the early-stage coarse-grained dolomite (CD) and the late-stage fine-grained dolomite (FD). The CD dolomite grains have C-O isotope ratios (δ13CVienna-PeeDee Belemnite (V-PDB): –4.8 to –3.3‰; δ18OVienna-standard mean ocean water (V-SMOW): 7.1 to 11.9‰) plotting in or adjacent to the primary igneous carbonatite field, with a narrow range of low 87Sr/86Sr ratios (0.70262–0.70327). The mantle-like C-O and Sr isotopes indicate that the coarse-grained dolomite rocks are magmatic in origin. Dolomite grains from the FD have experienced extensive hydrothermal alteration related to both REE mineralization and post-ore metamorphism of the Bayan Obo deposit. The domains of primary unaltered dolomite have high SrO and MnO contents that clearly distinguish them from sedimentary carbonates. The 87Sr/86Sr ratios of unaltered dolomite domains range from 0.70271 to 0.70473, with the majority lower than 0.7035, contrasting with higher 87Sr/86Sr ratios of Mesoproterozoic sedimentary carbonates globally. Thus, the primary unaltered fine-grained dolomite, the precursor to the FD, is also proposed to be a carbonatite. Compared with dolomite grains from the CD, most of the unaltered dolomite domains within the FD are more enriched in FeO and MnO and have higher δ13CV-PDB (-4.9 to 0.3 ‰) and δ18OV-SMOW (9.4 to 17.1 ‰) values. In addition, the FD contains abundant REE- and volatile-rich hydrothermal minerals and Fe-Mg carbonates, which are rare in the CD. The geochemical and mineralogical data in conjunction indicate that the melts forming the late-stage FD were much more evolved than those forming the early-stage CD. It is noteworthy that the unaltered dolomite domains within the FD have a wider range of 87Sr/86Sr ratios than those within the CD, which implies that the CD and FD, at least a proportion of them, are unlikely to have crystallized from the same progenitor magmas. Some FD was possibly the product of fractionation of less-evolved carbonatitic magma that generated the CD, whereas other FD crystallized from new pulses of magmas that were highly fractionated at depth. When compared with other carbonatite complexes, the Bayan Obo carbonatite suite is notable for having a large surface area (~48 km2 in outcrop) and containing an anomalously large proportion of highly evolved components. The voluminous evolved carbonatite clearly provided a basis for the accumulation of significant ore metals. Therefore, the giant-sized REE deposit is proposed to be associated with large-volume, highly evolved carbonatite at Bayan Obo.

Publisher

Society of Economic Geologists, Inc.

Reference118 articles.

1. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica;Anenburg;Science Advances,2020

2. Formation of rare earth deposits in carbonatite;Anenburg;Elements,2022

3. Demonstration on the geological features and genesis of the Bayan Obo ore deposit;Bai;Beijing, Geological Publishing House,1996

4. Clinopyroxene/melt trace element partitioning in sodic alkaline magmas;Beard;Journal of Petrology,2019

5. Neodymium and strontium isotope geochemistry of carbonatites;Bell,1989

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3