Variable Modes of Formation for Tonalite–Trondhjemite–Granodiorite–Diorite (TTG)-related Porphyry-type Cu ± Au Deposits in the Neoarchean Southern Abitibi Subprovince (Canada): Evidence from Petrochronology and Oxybarometry

Author:

Meng Xuyang1,Richards Jeremy P,Kontak Daniel J1,Simon Adam C2,Kleinsasser Jackie M2,Marsh Jeffrey H1,Stern Richard A3,Jugo Pedro J1

Affiliation:

1. Mineral Exploration Research Centre, Harquail School of Earth Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada

2. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA

3. Canadian Centre for Isotopic Microanalysis, University of Alberta, Edmonton, AB T6G 2E3, Canada

Abstract

Abstract Most known porphyry Cu ± Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite–trondhjemite–granodiorite–diorite (TTG) magmas predominant in the Archean are hypothesized to be unoxidized and sulfur-poor, which together preclude porphyry Cu deposit formation. Here, we test this hypothesis by interrogating the causative magmas for the ~2·7 Ga TTG-related Côté Gold, St-Jude, and Clifford porphyry-type Cu ± Au deposit settings in the Neoarchean southern Abitibi subprovince. New and previously published geochronological results constrain the age of emplacement of the causative magmas at ~2·74 Ga, ~2·70 Ga, and ~ 2·69 Ga, respectively. The dioritic and trondhjemitic magmas associated with Côté Gold and St-Jude evolved along a plagioclase-dominated fractionation trend, in contrast to amphibole-dominated fractionation for tonalitic magma at Clifford. Analyses of zircon grains from the Côté Gold, St-Jude, and Clifford igneous rocks yielded εHf(t) ± SD values of 4·5 ± 0·3, 4·2 ± 0·6, and 4·3 ± 0·4, and δ18O ± SD values of 5·40 ± 0·11 ‰, 3·91 ± 0·13 ‰, and 4·83 ± 0·12 ‰, respectively. These isotopic signatures indicate that, although these magmas are mantle-sourced with minimal crustal contamination, for the St-Jude and Clifford settings the magmas or their sources may have undergone variable alteration by heated seawater or meteoric fluids. Primary barometric minerals (i.e. zircon, amphibole, apatite, and magnetite–ilmenite) that survived variable alteration and metamorphism (up to greenschist facies) were used for estimating fO2 of the causative magmas. Estimation of magmatic fO2 values, reported relative to the fayalite–magnetite–quartz buffer as ΔFMQ, using zircon geochemistry indicates that the fO2 values of the St-Jude, Côté Gold, and Clifford magmas increase from ΔFMQ –0·3 ± 0·6 to ΔFMQ +0·8 ± 0·4 and to ΔFMQ +1·2 ± 0·4, respectively. In contrast, amphibole chemistry yielded systematically higher fO2 values of ΔFMQ +1·6 ± 0·3 and ΔFMQ +2·6 ± 0·1 for Côté Gold and Clifford, respectively, which are consistent with previous studies that indicate that amphibole may overestimate the fO2 of intrusive rocks by up to 1 log unit. Micro X-ray absorption near edge structure (μ-XANES) spectrometric determination of sulfur (i.e. S6+/ΣS) in primary apatite yielded ≥ΔFMQ −0·3 and ΔFMQ +1·4–1·8 for St-Jude and Clifford, respectively. The magnetite–ilmenite mineral pairs from the Clifford tonalite yielded ΔFMQ +3·3 ± 1·3 at equilibrium temperatures of 634 ± 21 °C, recording the redox state of the late stage of magma crystallization. Electron probe microanalyses revealed that apatite grains from Clifford are enriched in S (up to 0·1 wt%) relative to those of Côté Gold and St-Jude (below the detection limit), which is attributed to either relatively oxidized or sulfur-rich features of the Clifford tonalite. We interpret these results to indicate that the deposits at Côté Gold and Clifford formed from mildly (~ΔFMQ +0·8 ± 0·4) to moderately (~ΔFMQ +1·5) oxidized magmas where voluminous early sulfide saturation was probably limited, whereas the St-Jude deposit represents a rare case whereby the ingress of externally derived hydrothermal fluids facilitated metal fertility in a relatively reduced magma chamber (~ΔFMQ +0). Furthermore, we conclude that variable modes of formation for these deposits and, in addition, the apparent rarity of porphyry-type Cu–Au deposits in the Archean may be attributed to either local restriction of favorable metallogenic conditions, and/or preservation, or an exploration bias.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference148 articles.

1. Evolution of the southern Abitibi greenstone belt based on U–Pb geochronology: Autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation;Ayer;Precambrian Research,2002

2. Generation of trondhjemitic–tonalitic liquids and Archean bimodal trondhjemite–basalt suites;Barker;Geology,1976

3. The Timmins–Porcupine Gold Camp, northern Ontario: The anatomy of an Archaean Greenstone Belt and its gold mineralization, discover Abitibi initiative;Bateman;Ontario Geological Survey, Open File,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3