Contrasting Tectonomagmatic Conditions for Coexisting Iron Oxide-Apatite Deposits and Porphyry and Skarn Cu ± Au Deposits in the Middle-Lower Yangtze River Metallogenic Belt, China

Author:

Meng Xuyang12,Mao Jingwen13,Simon Adam2,Duan Chao3,Xie Guiqing13,Su Huimin4,Hou Tong1,Shi Ke5,Chen Nian1

Affiliation:

1. 1 MNR Key Laboratory for Exploration Theory and Technology of Critical Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

2. 2 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA

3. 3 MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences (CAGS), Beijing 100037, China

4. 4 Collaborative Innovation Center for Exploration of Strategic Mineral Resources, China University of Geosciences, Wuhan 430074, China

5. 5 MNR Innovative Center of Coverage Area Deep Resource Exploration Engineering Technology, Geological Survey of Anhui Province, Hefei 230001, China

Abstract

Abstract Porphyry Cu ± Mo ± Au and iron oxide-apatite (IOA) deposits rarely occur in spatial and temporal proximity in Phanerozoic arc-related settings, and the formation of these mineral deposit types in an evolving arc setting remains poorly understood. Specifically, the roles of magma composition and the tectonic regime remain the subject of some debate. Here, we systematically estimated the P-T-fO2 conditions and H2O-S-Cl contents for dioritic to granodioritic source magmas for porphyry and skarn Cu ± Au (150–135 Ma) and IOA deposits (~130 Ma) that formed in transpressional and transtensional settings in the Middle-Lower Yangtze River metallogenic belt, China. Our estimates show that, compared to IOA deposits, the porphyry- and skarn-related magmas were relatively felsic, cooler, and more hydrous. These geochemical features are consistent with the tectonic transition from subduction to slab rollback of the paleo-Pacific plate in the East Asia continental margin at <135 Ma and concomitant crustal extension and steepening of the regional geothermal gradient. Apatite data reveal that the silicate melts associated with the porphyry and skarn Cu ± Au and IOA deposits had comparable predegassed S concentrations (~0.13 ± 0.06 wt % vs. ~0.16 ± 0.09 wt % on average), but that IOA-related melts contained higher predegassed Cl/H2O ratios (~0.11 ± 0.03 vs. ~0.04 ± 0.03 for porphyry- and skarn-related magmas) that decreased by one order of magnitude after magmatic degassing. Magmatic fO2 estimated using zircon and amphibole, reported in log units relative to the fayalite-magnetite-quartz (FMQ) redox buffer, gradually increased during cooling of the porphyry- and skarn-related magmas (ΔFMQ +0.7 to +2.5) at 950° to 800°C and decreased to ΔFMQ +1 at 700°C owing to fractionation of Fe2+-rich minerals and subsequent S degassing, respectively. In contrast, the magmatic fO2 values for the IOA-related source magmas varied significantly from ΔFMQ –1.5 to ΔFMQ +2.5 but generally show an increasing trend with cooling from 970° to 700°C that probably resulted from variable degrees of evaporite assimilation, fractionation of Fe2+-rich minerals, and Cl degassing. These results are consistent with the hypothesis that Cl enrichment of the IOA-related source magmas played a determinant role in their formation. We propose that the porphyry and skarn Cu ± Au deposits in the Middle-Lower Yangtze River metallogenic belt formed in a transpressional setting in response to paleo-Pacific flat-slab subduction that favored storage and evolution of S-rich hydrous ore-forming magmas at variable crustal levels. A subsequent extensional setting formed due to slab rollback, leading to rapid degassing of Cl-rich IOA-related magmas. For the latter scenario, assimilation of evaporite by mafic to intermediate magmas would lead to an enrichment of Cl in the predegassed magmas and subsequent exsolution of hypersaline magmatic-hydrothermal fluid enriched in Fe as FeCl2. This Fe-rich ore fluid efficiently transported Fe to the apical parts of the magma bodies and overlying extensional normal faults where IOA mineralization was localized. The concomitant loss of S, H2O, and Cu with Cl by volcanic outgassing may have inhibited sulfide mineralization at lower temperatures.

Publisher

Society of Economic Geologists, Inc.

Reference168 articles.

1. Magmatic controls on porphyry copper genesis;Audétat;Society of Economic Geologists Special Publication,2012

2. Basal continental mantle lithosphere displaced by flat-slab subduction;Axen;Nature Geoscience,2018

3. Iron oxide (-Cu-Au-REE-P-Ag-U-Co) systems;Barton;Geochemistry of Mineral Deposits, Elsevier Inc.,2013

4. Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles;Bell;Geology,2011

5. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration;Bell;Geochimica et Cosmochimica Acta,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3