DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs

Author:

Li Wei1,Wang Yuanjun1,Liu Yu2

Affiliation:

1. School of Health Science and Engineering, University of Shanghai for Science and Technology , Shanghai 200093, China

2. Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, China

Abstract

Abstract Objectives Panoramic radiography is one of the most commonly used diagnostic modalities in dentistry. Automatic recognition of panoramic radiography helps dentists in decision support. In order to improve the accuracy of the detection of dental structural problems in panoramic radiographs, we have improved the You Only Look Once (YOLO) network and verified the feasibility of this new method in aiding the detection of dental problems. Methods We propose a Deformable Multi-scale Adaptive Fusion Net (DMAF-Net) to detect 5 types of dental situations (impacted teeth, missing teeth, implants, crown restorations, and root canal-treated teeth) in panoramic radiography by improving the YOLO network. In DMAF-Net, we propose different modules to enhance the feature extraction capability of the network as well as to acquire high-level features at different scales, while using adaptively spatial feature fusion to solve the problem of scale mismatches of different feature layers, which effectively improves the detection performance. In order to evaluate the detection performance of the models, we compare the experimental results of different models in the test set and select the optimal results of the models by calculating the average of different metrics in each category as the evaluation criteria. Results About 1474 panoramic radiographs were divided into training, validation, and test sets in the ratio of 7:2:1. In the test set, the average precision and recall of DMAF-Net are 92.7% and 87.6%, respectively; the mean Average Precision (mAP0.5 and mAP[0.5:0.95]) are 91.8% and 63.7%, respectively. Conclusions The proposed DMAF-Net model improves existing deep learning models and achieves automatic detection of tooth structure problems in panoramic radiographs. This new method has great potential for new computer-aided diagnostic, teaching, and clinical applications in the future.

Funder

Natural Science Foundation of Shanghai

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3