An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population

Author:

Bağ İrem,Bilgir Elif,Bayrakdar İbrahim Şevki,Baydar Oğuzhan,Atak Fatih Mehmet,Çelik Özer,Orhan Kaan

Abstract

Abstract Background Panoramic radiographs, in which anatomic landmarks can be observed, are used to detect cases closely related to pediatric dentistry. The purpose of the study is to investigate the success and reliability of the detection of maxillary and mandibular anatomic structures observed on panoramic radiographs in children using artificial intelligence. Methods A total of 981 mixed images of pediatric patients for 9 different pediatric anatomic landmarks including maxillary sinus, orbita, mandibular canal, mental foramen, foramen mandible, incisura mandible, articular eminence, condylar and coronoid processes were labelled, the training was carried out using 2D convolutional neural networks (CNN) architectures, by giving 500 training epochs and Pytorch-implemented YOLO-v5 models were produced. The success rate of the AI model prediction was tested on a 10% test data set. Results A total of 14,804 labels including maxillary sinus (1922), orbita (1944), mandibular canal (1879), mental foramen (884), foramen mandible (1885), incisura mandible (1922), articular eminence (1645), condylar (1733) and coronoid (990) processes were made. The most successful F1 Scores were obtained from orbita (1), incisura mandible (0.99), maxillary sinus (0.98), and mandibular canal (0.97). The best sensitivity values were obtained from orbita, maxillary sinus, mandibular canal, incisura mandible, and condylar process. The worst sensitivity values were obtained from mental foramen (0.92) and articular eminence (0.92). Conclusions The regular and standardized labelling, the relatively larger areas, and the success of the YOLO-v5 algorithm contributed to obtaining these successful results. Automatic segmentation of these structures will save time for physicians in clinical diagnosis and will increase the visibility of pathologies related to structures and the awareness of physicians.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3