Local Viterbi property in decoding
Affiliation:
1. Institute of Mathematics and Statistics , University of Tartu, Tartu, Estonia
Abstract
Abstract
The article studies the decoding problem (also known as the classification or the segmentation problem) with pairwise Markov models (PMMs). A PMM is a process where the observation process and the underlying state sequence form a two-dimensional Markov chain, a natural generalization of hidden Markov model. The standard solutions to the decoding problem are the so-called Viterbi path—a sequence with maximum state path probability given the observations—or the pointwise maximum a posteriori (PMAP) path that maximizes the expected number of correctly classified entries. When the goal is to simultaneously maximize both criterions—conditional probability (corresponding to Viterbi path) and pointwise conditional probability (corresponding to PMAP path)—then they are combined into one single criterion via the regularization parameter $C$. The main objective of the article is to study the behaviour of the solution—called the hybrid path—as $C$ grows. Increasing $C$ increases the conditional probability of the hybrid path and when $C$ is big enough then every hybrid path is a Viterbi path. We show that hybrid paths also approach the Viterbi path locally: we define $m$-locally Viterbi paths and show that the hybrid path is $m$-locally Viterbi whenever $C$ is big enough. This all might lead to an impression that when $C$ is relatively big then any hybrid path that is not yet Viterbi differs from the Viterbi path by a few single entries only. We argue that this intuition is wrong, because when unique and $m$-locally Viterbi, then different hybrid paths differ by at least $m$ entries. Thus, when $C$ increases then the different hybrid paths tend to differ from each other by larger and larger intervals. Hence the hybrid paths might offer a variety of rather different solutions to the decoding problem.
Funder
Estonian Research Council
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pairwise Markov Models and Hybrid Segmentation Approach;Methodology and Computing in Applied Probability;2023-06