Pairwise Markov Models and Hybrid Segmentation Approach

Author:

Kuljus KristiORCID,Lember Jüri

Abstract

AbstractThe article studies segmentation problem (also known as classification problem) with pairwise Markov models (PMMs). A PMM is a process where the observation process and underlying state sequence form a two-dimensional Markov chain, it is a natural generalization of a hidden Markov model. To demonstrate the richness of the class of PMMs, we examine closer a few examples of rather different types of PMMs: a model for two related Markov chains, a model that allows to model an inhomogeneous Markov chain as a conditional marginal process of a homogeneous PMM, and a semi-Markov model. The segmentation problem assumes that one of the marginal processes is observed and the other one is not, the problem is to estimate the unobserved state path given the observations. The standard state path estimators often used are the so-called Viterbi path (a sequence with maximum state path probability given the observations) or the pointwise maximum a posteriori (PMAP) path (a sequence that maximizes the conditional state probability for given observations pointwise). Both these estimators have their limitations, therefore we derive formulas for calculating the so-called hybrid path estimators which interpolate between the PMAP and Viterbi path. We apply the introduced algorithms to the studied models in order to demonstrate the properties of different segmentation methods, and to illustrate large variation in behaviour of different segmentation methods in different PMMs. The studied examples show that a segmentation method should always be chosen with care by taking into account the purpose of modelling and the particular model of interest.

Funder

Eesti Teadusagentuur

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates;Chaos, Solitons & Fractals;2024-03

2. Forecasting with Pairwise Gaussian Markov Models;2023 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI);2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3