SE(3) Synchronization by eigenvectors of dual quaternion matrices

Author:

Hadi Ido12ORCID,Bendory Tamir34ORCID,Sharon Nir12

Affiliation:

1. School of Mathematical Sciences , Faculty of Exact Sciences, , Tel Aviv 6997801 , Israel

2. Tel Aviv University , Faculty of Exact Sciences, , Tel Aviv 6997801 , Israel

3. School of Electrical Engineering , Faculty of Engineering, , Tel Aviv 6997801 , Israel

4. Tel Aviv University , Faculty of Engineering, , Tel Aviv 6997801 , Israel

Abstract

Abstract In synchronization problems, the goal is to estimate elements of a group from noisy measurements of their ratios. A popular estimation method for synchronization is the spectral method. It extracts the group elements from eigenvectors of a block matrix formed from the measurements. The eigenvectors must be projected, or ‘rounded’, onto the group. The rounding procedures are constructed ad hoc and increasingly so when applied to synchronization problems over non-compact groups. In this paper, we develop a spectral approach to synchronization over the non-compact group $\mathrm{SE}(3)$, the group of rigid motions of $\mathbb{R}^{3}$. We based our method on embedding $\mathrm{SE}(3)$ into the algebra of dual quaternions, which has deep algebraic connections with the group $\mathrm{SE}(3)$. These connections suggest a natural rounding procedure considerably more straightforward than the current state of the art for spectral $\mathrm{SE}(3)$ synchronization, which uses a matrix embedding of $\mathrm{SE}(3)$. We show by numerical experiments that our approach yields comparable results with the current state of the art in $\mathrm{SE}(3)$ synchronization via the spectral method. Thus, our approach reaps the benefits of the dual quaternion embedding of $\mathrm{SE}(3)$ while yielding estimators of similar quality.

Funder

Binational Science Foundation

Israeli Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bispectrum Unbiasing for Dilation-Invariant Multi-Reference Alignment;IEEE Transactions on Signal Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3