Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers

Author:

Bah Bubacarr1,Rauhut Holger2,Terstiege Ulrich2,Westdickenberg Michael3

Affiliation:

1. Research Centre, African Institute for Mathematical Sciences (AIMS) South Africa, Department of Mathematical Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa

2. Chair for Mathematics of Information Processing, RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany

3. Institute for Mathematics, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany

Abstract

Abstract We study the convergence of gradient flows related to learning deep linear neural networks (where the activation function is the identity map) from data. In this case, the composition of the network layers amounts to simply multiplying the weight matrices of all layers together, resulting in an overparameterized problem. The gradient flow with respect to these factors can be re-interpreted as a Riemannian gradient flow on the manifold of rank-$r$ matrices endowed with a suitable Riemannian metric. We show that the flow always converges to a critical point of the underlying functional. Moreover, we establish that, for almost all initializations, the flow converges to a global minimum on the manifold of rank $k$ matrices for some $k\leq r$.

Funder

Deutscher Akademischer Austauschdienst

Federal Ministry of Education and Research

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference23 articles.

1. Convergence of the iterates of descent methods for analytic cost functions;Absil;SIAM J. Optim.,2005

2. Low-rank retractions: a survey and new results;Absil;Comput. Optim. Appl.,2015

3. A convergence analysis of gradient descent for deep linear neural networks;Arora,2018

4. On the optimization of deep networks: implicit acceleration by overparameterization;Arora,2018

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convergence of gradient descent for learning linear neural networks;Advances in Continuous and Discrete Models;2024-07-18

2. Robust implicit regularization via weight normalization;Information and Inference: A Journal of the IMA;2024-07-01

3. Function Space and Critical Points of Linear Convolutional Networks;SIAM Journal on Applied Algebra and Geometry;2024-05-21

4. Infinite‐width limit of deep linear neural networks;Communications on Pure and Applied Mathematics;2024-05-06

5. The effect of smooth parametrizations on nonconvex optimization landscapes;Mathematical Programming;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3