1. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)
2. Arora, S., Cohen, N., Golowich, N., Hu, W.: A convergence analysis of gradient descent for deep linear neural networks. In: International Conference on Learning Representations (2019)
3. Arora, S., Cohen, N., Hazan, E.: On the optimization of deep networks: implicit acceleration by overparameterization. In: International Conference on Machine Learning (2018)
4. Arora, S., Cohen, N., Hu, W., Luo, Y.: Implicit regularization in deep matrix factorization. In: Advances in Neural Information Processing Systems, pp. 7413–7424 (2019)
5. Bah, B., Rauhut, H., Terstiege, U., Westdickenberg, M.: Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers. Inf. Inference 11(1), 307–353, (2022).