Size-independent sample complexity of neural networks

Author:

Golowich Noah1,Rakhlin Alexander2,Shamir Ohad3

Affiliation:

1. Harvard University, Cambridge, MA, USA

2. Department of Brain & Cognitive Science MIT, Cambridge, MA, USA

3. Microsoft Research and Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

Abstract

Abstract We study the sample complexity of learning neural networks by providing new bounds on their Rademacher complexity, assuming norm constraints on the parameter matrix of each layer. Compared to previous work, these complexity bounds have improved dependence on the network depth and, under some additional assumptions, are fully independent of the network size (both depth and width). These results are derived using some novel techniques, which may be of independent interest.

Funder

Harvard University

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference29 articles.

1. Learning and generalization in overparameterized neural networks, going beyond twolayers;Allen-Zhu,2018

2. Universal approximation bounds for superpositions of a sigmoidal function;Barron;IEEE Trans. Inf. Theory,1993

3. Spectrally-normalized margin bounds for neural networks;Bartlett,2017

4. Vapnik–Chervonenkis dimension bounds for two-and three-layer networks;Bartlett;Neural Comput.,1993

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3