Optimal Rates of Approximation by Shallow ReLU$$^k$$ Neural Networks and Applications to Nonparametric Regression

Author:

Yang Yunfei,Zhou Ding-Xuan

Abstract

AbstractWe study the approximation capacity of some variation spaces corresponding to shallow ReLU$$^k$$ k neural networks. It is shown that sufficiently smooth functions are contained in these spaces with finite variation norms. For functions with less smoothness, the approximation rates in terms of the variation norm are established. Using these results, we are able to prove the optimal approximation rates in terms of the number of neurons for shallow ReLU$$^k$$ k neural networks. It is also shown how these results can be used to derive approximation bounds for deep neural networks and convolutional neural networks (CNNs). As applications, we study convergence rates for nonparametric regression using three ReLU neural network models: shallow neural network, over-parameterized neural network, and CNN. In particular, we show that shallow neural networks can achieve the minimax optimal rates for learning Hölder functions, which complements recent results for deep neural networks. It is also proven that over-parameterized (deep or shallow) neural networks can achieve nearly optimal rates for nonparametric regression.

Funder

City University of Hong Kong

Publisher

Springer Science and Business Media LLC

Reference68 articles.

1. Achour, E.M., Foucault,A., Gerchinovitz, S., Malgouyres, F.: a general approximation lower bound in $${L}^{}$$p norm, with applications to feed-forward neural networks. In: Advances in Neural Information Processing Systems, vol. 35, pp. 22396–22408. Curran Associates, Inc. (2022)

2. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (2009)

3. Bach, F.: Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18(19), 1–53 (2017)

4. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)

5. Bartlett, P.L., Foster, D.J., Telgarsky, M.: Spectrally-normalized margin bounds for neural networks. In: Advances in Neural Information Processing Systems, vol. 30, pp. 6240–6249. Curran Associates, Inc. (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sampling complexity of deep approximation spaces;Analysis and Applications;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3