1. Achour, E.M., Foucault,A., Gerchinovitz, S., Malgouyres, F.: a general approximation lower bound in $${L}^{}$$p norm, with applications to feed-forward neural networks. In: Advances in Neural Information Processing Systems, vol. 35, pp. 22396–22408. Curran Associates, Inc. (2022)
2. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (2009)
3. Bach, F.: Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18(19), 1–53 (2017)
4. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)
5. Bartlett, P.L., Foster, D.J., Telgarsky, M.: Spectrally-normalized margin bounds for neural networks. In: Advances in Neural Information Processing Systems, vol. 30, pp. 6240–6249. Curran Associates, Inc. (2017)