Affiliation:
1. Department of Statistics, Stanford University, 94305, Stanford, CA, USA
Abstract
Abstract
We show that the high-dimensional behavior of symmetrically penalized least squares with a possibly non-separable, symmetric, convex penalty in both (i) the Gaussian sequence model and (ii) the linear model with uncorrelated Gaussian designs nearly agrees with the behavior of least squares with an appropriately chosen separable penalty in these same models. This agreement is established by finite-sample concentration inequalities which precisely characterize the behavior of symmetrically penalized least squares in both models via a comparison to a simple scalar statistical model. The concentration inequalities are novel in their precision and generality. Our results help clarify that the role non-separability can play in high-dimensional M-estimation. In particular, if the empirical distribution of the coordinates of the parameter is known—exactly or approximately—there are at most limited advantages to use non-separable, symmetric penalties over separable ones. In contrast, if the empirical distribution of the coordinates of the parameter is unknown, we argue that non-separable, symmetric penalties automatically implement an adaptive procedure, which we characterize. We also provide a partial converse which characterizes the adaptive procedures which can be implemented in this way.
Funder
National Science Foundation Graduate Research Fellowship Program
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献