Does SLOPE outperform bridge regression?

Author:

Wang Shuaiwen1,Weng Haolei2,Maleki Arian1

Affiliation:

1. Department of Statistics, Columbia University, NY 10027, USA

2. Department of Statistics and Probability, Michigan State university, MI 48824, USA

Abstract

Abstract A recently proposed SLOPE estimator [6] has been shown to adaptively achieve the minimax $\ell _2$ estimation rate under high-dimensional sparse linear regression models [25]. Such minimax optimality holds in the regime where the sparsity level $k$, sample size $n$ and dimension $p$ satisfy $k/p\rightarrow 0, k\log p/n\rightarrow 0$. In this paper, we characterize the estimation error of SLOPE under the complementary regime where both $k$ and $n$ scale linearly with $p$, and provide new insights into the performance of SLOPE estimators. We first derive a concentration inequality for the finite sample mean square error (MSE) of SLOPE. The quantity that MSE concentrates around takes a complicated and implicit form. With delicate analysis of the quantity, we prove that among all SLOPE estimators, LASSO is optimal for estimating $k$-sparse parameter vectors that do not have tied nonzero components in the low noise scenario. On the other hand, in the large noise scenario, the family of SLOPE estimators are sub-optimal compared with bridge regression such as the Ridge estimator.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference39 articles.

1. The dynamics of message passing on dense graphs, with applications to compressed sensing;Bayati;IEEE Transactions on Information Theory,2011

2. The LASSO risk for Gaussian matrices;Bayati;IEEE Transactions on Information Theory,2011

3. Slope meets lasso: improved oracle bounds and optimality;Bellec;The Annals of Statistics,2018

4. Simultaneous analysis of Lasso and Dantzig selector;Bickel;The Annals of Statistics,2009

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3