Algorithmic prediction of failure modes in healthcare

Author:

Kobo-Greenhut Ayala1ORCID,Sharlin Ortal2,Adler Yael2,Peer Nitza2,Eisenberg Vered H2,Barbi Merav3,Levy Talia3,Shlomo Izhar Ben1,Eyal Zimlichman2

Affiliation:

1. The Israel Center for the of Failure Modes in Medical Systems, Program of Emergency Medicine, Zefat Academic College, Jrusalem St. 11, Safed 13206, Israel

2. Hospital Management, Quality and Safety Department, Sheba Medical Center, Ramat Gan, Israel

3. Division of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Israel

Abstract

Abstract Background Preventing medical errors is crucial, especially during crises like the COVID-19 pandemic. Failure Modes and Effects Analysis (FMEA) is the most widely used prospective hazard analysis in healthcare. FMEA relies on brainstorming by multi-disciplinary teams to identify hazards. This approach has two major weaknesses: significant time and human resource investments, and lack of complete and error-free results. Objectives To introduce the algorithmic prediction of failure modes in healthcare (APFMH) and to examine whether APFMH is leaner in resource allocation in comparison to the traditional FMEA and whether it ensures the complete identification of hazards. Methods The patient identification during imaging process at the emergency department of Sheba Medical Center was analyzed by FMEA and APFMH, independently and separately. We compared between the hazards predicted by APFMH method and the hazards predicted by FMEA method; the total participants’ working hours invested in each process and the adverse events, categorized as ‘patient identification’, before and after the recommendations resulted from the above processes were implemented. Results APFMH is more effective in identifying hazards (P < 0.0001) and is leaner in resources than the traditional FMEA: the former used 21 h whereas the latter required 63 h. Following the implementation of the recommendations, the adverse events decreased by 44% annually (P = 0.0026). Most adverse events were preventable, had all recommendations been fully implemented. Conclusion In light of our initial and limited-size study, APFMH is more effective in identifying hazards (P < 0.0001) and is leaner in resources than the traditional FMEA. APFMH is suggested as an alternative to FMEA since it is leaner in time and human resources, ensures more complete hazard identification and is especially valuable during crisis time, when new protocols are often adopted, such as in the current days of the COVID-19 pandemic.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Health Policy,General Medicine

Reference36 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3