Different Binding Affinities of Three General Odorant-Binding Proteins inGrapholita funebrana(Treitscheke) (Lepidoptera: Tortricidae) to Sex Pheromones, Host Plant Volatiles, and Insecticides

Author:

Li Lin-Lin1,Xu Bing-Qiang2,Li Chun-Qin1,Li Bo-Liao1,Chen Xiu-Lin1,Li Guang-Wei1ORCID

Affiliation:

1. Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University , Yan’an, Shaanxi , P. R. China

2. Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences , Urumchi, Xinjiang , P. R. China

Abstract

AbstractInsect general odorant-binding proteins (GOBPs) play irreplaceable roles in filtering, binding, and transporting host odorants to olfactory receptors. Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae), an economically important pest of fruit crops, uses fruit volatiles as cues to locate host plants. However, the functions of GOBPs in G. funebrana are still unknown. Three GOBP genes, namely, GfunGOBP1, GfunGOBP2, and GfunGOBP3, were cloned, and their expression profiles in different tissues were detected by the method of real-time quantitative PCR (RT-qPCR). The binding properties of recombinant GfunGOBPs (rGfunGOBPs) to various ligands were investigated via fluorescence binding assays. The three GfunGOBPs were mainly expressed in the antennae of both male and female moths. All these three rGfunGOBPs could bind to sex pheromones, while having varying affinities toward these pheromones. The three rGfunGOBPs also displayed a wide range of ligand-binding spectrums with tested host odorants. The rGfunGOBP1, rGfunGOBP2, and rGfunGOBP3 bound to 34, 33, and 30 out of the 41 tested odorants, respectively. Three rGfunGOBPs had overlapping binding activities to β-myrcene, (-)-α-phellandrene, and ethyl isovalerate with the Ki less than 3.0 μM. The rGfunGOBP1 and rGfunGOBP3 could selectively bind to several insecticides, whereas rGfunGOBP2 could not. Three rGfunGOBPs had the dual functions of selectively binding to sex pheromones and host odorants. Moreover, the rGfunGOBP1 and rGfunGOBP3 can also serve as ‘signal proteins’ and bind to different insecticides. This study contributed to elucidating the potential molecular mechanism of the olfaction for G. funebrana, and thereby promotes the development of effective botanical attractants or pheromone synergists to control G. funebrana.

Funder

National Natural Science Foundation of China

Natural Science in Shaanxi Province, China

Research Startup Foundation of Yan’an University

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3