Revival of Krebs–Ringer balanced salt solution for the investigation of polymorphonuclear leukocytes and Pseudomonas aeruginosa biofilm interaction

Author:

Bjarnsholt Thomas12,Jensen Peter Østrup12,Alhede Maria1ORCID

Affiliation:

1. Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark

2. Department of Clinical Microbiology, Rigshospitalet, DK-2100 Copenhagen, Denmark

Abstract

ABSTRACT To study the interaction between aggregating bacteria and polymorphonuclear leukocytes (PMNs) in vitro, the chosen medium must favor both the isolated PMNs and the bacteria. To investigate the best-suited medium for the in vitro survival of isolated unactivated human PMNs, we compared three different mammalian cell media: Krebs–Ringer balanced salt solution (BSS), Hanks’ BSS (HBSS) and Roswell Park Memorial Institute (RPMI) 1640. The death of PMNs was estimated by the release of lactate dehydrogenase activity. Furthermore, two types of serum, human (HS) and fetal bovine (FBS), were compared at different concentrations (0%, 2%, 5%, 10%) and at three different time points (2, 4, 20 h). We show that Krebs–Ringer BSS prolonged the survival of PMNs compared to HBSS and RPMI 1640 and that the addition of 10% FBS significantly enhanced the long-term survival (20 h) compared to HS. Furthermore, we observed aggregation of Pseudomonas aeruginosa when grown in the presence of either a mixture of histones, histone H3, arginine or lysine. In this study, we show that the use of Krebs–Ringer BSS is highly relevant for the study of the interaction of bacteria and PMNs in relation to novel treatment strategies of biofilm infections due to the reproduction of bacterial aggregation as seen in chronic bacterial infections.

Funder

Lundbeck Foundation

Hørslev-Fonden

Aase og Ejnar Danielsens Fond

Torben and Alice Frimodts Fond

Kong Christian den Tiendes Fond

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3