Positive selection and enhancer evolution shaped lifespan and body mass in great apes

Author:

Tejada-Martinez Daniela12,Avelar Roberto A2,Lopes Inês2,Zhang Bruce3,Novoa Guy4,de Magalhães João Pedro2,Trizzino Marco1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA

2. Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK

3. Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK

4. Department of Structure of Macromolecules, Centro Nacional de Biotecnología—CSIC, Madrid, Spain

Abstract

Abstract Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over ten thousand genes, including ∼1,500 previously associated with lifespan, and additional ∼9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq) and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan and body mass we identified 276 genes whose rate of evolution positively correlates with maximum lifespan in primates. Further, we identified 5 genes, important for tumor suppression, adaptive immunity, metastasis and inflammation, under positive selection exclusively in the great ape lineage. RNA-seq data, generated from the liver of six species representing all the primate lineages, revealed that 8% of ∼1,500 genes previously associated with longevity are differentially expressed in apes relative to other primates. Importantly, by integrating RNA-seq with ChIP-seq for H3K27ac (which marks active enhancers), we show that the differentially expressed longevity genes are significantly more likely than expected to be located near a novel “ape-specific” enhancer. Moreover, these particular ape-specific enhancers are enriched for young transposable elements, and specifically SINE-Vntr-Alus (SVAs). In summary, we demonstrate that multiple evolutionary forces have contributed to the evolution of lifespan and body size in primates.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3