A phylogenetic method linking nucleotide substitution rates to rates of continuous trait evolution

Author:

Gemmell Patrick,Sackton Timothy B.ORCID,Edwards Scott V.,Liu Jun S.ORCID

Abstract

Genomes contain conserved non-coding sequences that perform important biological functions, such as gene regulation. We present a phylogenetic method, PhyloAcc-C, that associates nucleotide substitution rates with changes in a continuous trait of interest. The method takes as input a multiple sequence alignment of conserved elements, continuous trait data observed in extant species, and a background phylogeny and substitution process. Gibbs sampling is used to assign rate categories (background, conserved, accelerated) to lineages and explore whether the assigned rate categories are associated with increases or decreases in the rate of trait evolution. We test our method using simulations and then illustrate its application using mammalian body size and lifespan data previously analyzed with respect to protein coding genes. Like other studies, we find processes such as tumor suppression, telomere maintenance, and p53 regulation to be related to changes in longevity and body size. In addition, we also find that skeletal genes, and developmental processes, such as sprouting angiogenesis, are relevant.

Funder

National Human Genome Research Institute

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. Phylogenetics is the new genetics (for most of biodiversity);SD Smith;Trends in Ecology & Evolution,2020

2. A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species;M Hiller;Cell Reports,2012

3. “Reverse genomics” predicts function of human conserved noncoding elements;A Marcovitz;Molecular Biology and Evolution,2016

4. Controlling for phylogenetic relatedness and evolutionary rates improves the discovery of associations between species’ phenotypic and genomic differences;X Prudent;Molecular Biology and Evolution,2016

5. REforge associates transcription factor binding site divergence in regulatory elements with phenotypic differences between species;BE Langer;Molecular Biology and Evolution,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3