IPOP: An Integrative Plant Multi-omics Platform for Cross-species Comparison and Evolutionary Study

Author:

Huang Wenyue1,Hu Xiaona2,Ren Yanlin1,Song Minggui1,Ma Chuang13ORCID,Miao Zhenyan13

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University , Yangling, Shaanxi 712100 , China

2. College of Chemistry & Pharmacy, Northwest A&F University , Yangling, Shaanxi 712100 , China

3. Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100 , China

Abstract

Abstract The advent of high-throughput sequencing technologies has led to the production of a significant amount of omics data in plants, which serves as valuable assets for conducting cross-species multi-omics comparative analysis. Nevertheless, the current dearth of comprehensive platforms providing evolutionary annotation information and multi-species multi-omics data impedes users from systematically and efficiently performing evolutionary and functional analysis on specific genes. In order to establish an advanced plant multi-omics platform that provides timely, accurate, and high-caliber omics information, we collected 7 distinct types of omics data from 6 monocots, 6 dicots, and 1 moss, and reanalyzed these data using standardized pipelines. Additionally, we furnished homology information, duplication events, and phylostratigraphic stages of 13 species to facilitate evolutionary examination. Furthermore, the integrative plant omics platform (IPOP) is bundled with a variety of online analysis tools that aid users in conducting evolutionary and functional analysis. Specifically, the Multi-omics Integration Analysis tool is available to consolidate information from diverse omics sources, while the Transcriptome-wide Association Analysis tool facilitates the linkage of functional analysis with phenotype. To illustrate the application of IPOP, we conducted a case study on the YTH domain gene family, wherein we observed shared functionalities within orthologous groups and discerned variations in evolutionary patterns across these groups. To summarize, the IPOP platform offers valuable evolutionary insights and multi-omics data to the plant sciences community, effectively addressing the need for cross-species comparison and evolutionary research platforms. All data and modules within IPOP are freely accessible for academic purposes (http://omicstudio.cloud:4012/ipod/).

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3