Trade-Offs Predicted by Metabolic Network Structure Give Rise to Evolutionary Specialization and Phenotypic Diversification

Author:

Ekkers David M12,Tusso Sergio34,Moreno-Gamez Stefany1,Rillo Marina C5,Kuipers Oscar P2ORCID,van Doorn G Sander1ORCID

Affiliation:

1. Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen , Nijenborgh 7, 9747 AG Groningen , The Netherlands

2. Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 7, 9747 AG Groningen , The Netherlands

3. Division of Evolutionary Biology, Faculty of Biology, LMU Munich , Grosshaderner Str. 2, 82152 Planegg-Martinsried , Germany

4. Science for Life Laboratories and Department of Evolutionary Biology , Norbyvägen 18D, Uppsala University, 75236 Uppsala , Sweden

5. Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg , Schleusenstr. 1, 26382 Wilhelmshaven , Germany

Abstract

Abstract Mitigating trade-offs between different resource-utilization functions is key to an organism’s ecological and evolutionary success. These trade-offs often reflect metabolic constraints with a complex molecular underpinning; therefore, their consequences for evolutionary processes have remained elusive. Here, we investigate how metabolic architecture induces resource-utilization constraints and how these constraints, in turn, elicit evolutionary specialization and diversification. Guided by the metabolic network structure of the bacterium Lactococcus cremoris, we selected two carbon sources (fructose and galactose) with predicted coutilization constraints. By evolving L. cremoris on either fructose, galactose, or a mix of both sugars, we imposed selection favoring divergent metabolic specializations or coutilization of both resources, respectively. Phenotypic characterization revealed the evolution of either fructose or galactose specialists in the single-sugar treatments. In the mixed-sugar regime, we observed adaptive diversification: both specialists coexisted, and no generalist evolved. Divergence from the ancestral phenotype occurred at key pathway junctions in the central carbon metabolism. Fructose specialists evolved mutations in the fbp and pfk genes that appear to balance anabolic and catabolic carbon fluxes. Galactose specialists evolved increased expression of pgmA (the primary metabolic bottleneck of galactose metabolism) and silencing of ptnABCD (the main glucose transporter) and ldh (regulator/enzyme of downstream carbon metabolism). Overall, our study shows how metabolic network architecture and historical contingency serve to predict targets of selection and inform the functional interpretation of evolved mutations. The elucidation of the relationship between molecular constraints and phenotypic trade-offs contributes to an integrative understanding of evolutionary specialization and diversification.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3