Two Forms of Sexual Dimorphism in Gene Expression in Drosophila melanogaster: Their Coincidence and Evolutionary Genetics

Author:

Singh Amardeep1,Agrawal Aneil F1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Toronto , Toronto , Canada

Abstract

Abstract Phenotypic sexual dimorphism can be mediated by sex differences in gene expression. We examine two forms of sexual dimorphism in gene expression in Drosophila melanogaster: 1) sex-biased gene expression (SBGE) in which the sexes differ in the amount a gene is expressed and 2) sexual dimorphism in isoform usage, that is, sex-specific splicing (SSS). In whole body (but not the head) expression, we find a negative association between SBGE and SSS, possibly suggesting that these are alternate routes to resolving sexual antagonistic selection. Next, we evaluate whether expression dimorphism contributes to the heterogeneity among genes in rmf, the intersexual genetic correlation in body expression that constrains the extent to which a gene's expression can evolve independently between the sexes. We find lower rmf values for genes with than without SSS. We find higher rmf values for male- than female-biased genes (except genes with extreme male bias), even though male-biased genes are known to have greater evolutionary divergence in expression. Finally, we examine population genetic patterns in relation to SBGE and SSS because genes with expression dimorphism have likely experienced a history of sex differences in selection. SSS is associated with reduced values of Tajima's D and elevated direction of selection (DoS) values, suggestive of higher rates of adaptive evolution. Though DoS is highly elevated for genes with extreme male bias, DoS otherwise tends to decline from female-biased to unbiased to male-biased genes. Collectively, the results indicate that SBGE and SSS are differentially distributed across the genome and are associated with different forms of selection.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3