LFMM 2: Fast and Accurate Inference of Gene-Environment Associations in Genome-Wide Studies

Author:

Caye Kevin1,Jumentier Basile1,Lepeule Johanna2,François Olivier1

Affiliation:

1. Université Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble INP, TIMC-IMAG CNRS UMR 5525, Grenoble 38000, France

2. Université Grenoble-Alpes, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institute for Advanced Biosciences, INSERM U 1209 - CNRS UMR 5309, Grenoble 38000, France

Abstract

Abstract Gene-environment association (GEA) studies are essential to understand the past and ongoing adaptations of organisms to their environment, but those studies are complicated by confounding due to unobserved demographic factors. Although the confounding problem has recently received considerable attention, the proposed approaches do not scale with the high-dimensionality of genomic data. Here, we present a new estimation method for latent factor mixed models (LFMMs) implemented in an upgraded version of the corresponding computer program. We developed a least-squares estimation approach for confounder estimation that provides a unique framework for several categories of genomic data, not restricted to genotypes. The speed of the new algorithm is several order faster than existing GEA approaches and then our previous version of the LFMM program. In addition, the new method outperforms other fast approaches based on principal component or surrogate variable analysis. We illustrate the program use with analyses of the 1000 Genomes Project data set, leading to new findings on adaptation of humans to their environment, and with analyses of DNA methylation profiles providing insights on how tobacco consumption could affect DNA methylation in patients with rheumatoid arthritis. Software availability: Software is available in the R package lfmm at https://bcm-uga.github.io/lfmm/.

Funder

LabEx PERSYVAL Lab

French National Research Agency

Agence Nationale pour la Recherche

Grenoble Alpes Data Institute

“Investissements d’avenir” program

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3