UPrimer: A Clade-Specific Primer Design Program Based on Nested-PCR Strategy and Its Applications in Amplicon Capture Phylogenomics

Author:

Li JiaXuan1,Han GuangCheng1,Tian Xiao1,Liang Dan1,Zhang Peng1

Affiliation:

1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou 510275 , China

Abstract

Abstract Amplicon capture is a promising target sequence capture approach for phylogenomic analyses, and the design of clade-specific nuclear protein-coding locus (NPCL) amplification primers is crucial for its successful application. In this study, we developed a primer design program called UPrimer that can quickly design clade-specific NPCL amplification primers based on genome data, without requiring manual intervention. Unlike other available primer design programs, UPrimer uses a nested-PCR strategy that greatly improves the amplification success rate of the designed primers. We examined all available metazoan genome data deposited in NCBI and developed NPCL primer sets for 21 metazoan groups with UPrimer, covering a wide range of taxa, including arthropods, mollusks, cnidarians, echinoderms, and vertebrates. On average, each clade-specific NPCL primer set comprises ∼1,000 NPCLs. PCR amplification tests were performed in 6 metazoan groups, and the developed primers showed a PCR success rate exceeding 95%. Furthermore, we demonstrated a phylogenetic case study in Lepidoptera, showing how NPCL primers can be used for phylogenomic analyses with amplicon capture. Our results indicated that using 100 NPCL probes recovered robust high-level phylogenetic relationships among butterflies, highlighting the utility of the newly designed NPCL primer sets for phylogenetic studies. We anticipate that the automated tool UPrimer and the developed NPCL primer sets for 21 metazoan groups will enable researchers to obtain phylogenomic data more efficiently and cost-effectively and accelerate the resolution of various parts of the Tree of Life.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3