Snake Recombination Landscapes Are Concentrated in Functional Regions despite PRDM9

Author:

Schield Drew R1,Pasquesi Giulia I M1,Perry Blair W1,Adams Richard H12,Nikolakis Zachary L1,Westfall Aundrea K1,Orton Richard W1,Meik Jesse M3,Mackessy Stephen P4,Castoe Todd A1

Affiliation:

1. Department of Biology, University of Texas at Arlington, Arlington, TX

2. Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL

3. Department of Biological Sciences, Tarleton State University, Stephenville, TX

4. School of Biological Sciences, University of Northern Colorado, Greeley, CO

Abstract

Abstract Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.e., mammals), whereas hotspots in species lacking PRDM9 are concentrated in functional regions and have greater stability over time (i.e., birds). Snakes possess PRDM9, yet virtually nothing is known about snake recombination. Here, we examine the recombination landscape and test hypotheses about the roles of PRDM9 in rattlesnakes. We find substantial variation in recombination rate within and among snake chromosomes, and positive correlations between recombination rate and gene density, GC content, and genetic diversity. Like mammals, snakes appear to have a functional and active PRDM9, but rather than being directed away from genes, snake hotspots are concentrated in promoters and functional regions—a pattern previously associated only with species that lack a functional PRDM9. Snakes therefore provide a unique example of recombination landscapes in which PRDM9 is functional, yet recombination hotspots are associated with functional genic regions—a combination of features that defy existing paradigms for recombination landscapes in vertebrates. Our findings also provide evidence that high recombination rates are a shared feature of vertebrate microchromosomes. Our results challenge previous assumptions about the adaptive role of PRDM9 and highlight the diversity of recombination landscape features among vertebrate lineages.

Funder

NCBI SRA

NCBI

National Science Foundation

University of Northern Colorado Research Dissemination

University of Colorado Institutional Animal Care and Use Committee

IACUC

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3