Conservation of mutation and recombination parameters between mammals and zebra finch

Author:

Prentout Djivan,Bykova Daria,Hoge Carla,Hooper Daniel M.,McDiarmid Callum S.,Wu Felix,Griffith Simon C.,de Manuel Marc,Przeworski Molly

Abstract

AbstractMost of our understanding of the fundamental processes of mutation and recombination stems from a handful of disparate model organisms and pedigree studies of mammals, with little known about other vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia castanotis), which, like other birds, differs from mammals in its karyotype (which includes many micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide information about 80 meioses, inferring 202 single-pointde novomutations, 1,174 crossovers, and 275 non-crossovers. On that basis, we estimated a sex-averaged mutation rate of 5.0 × 10-9per base pair per generation, on par with mammals that have a similar generation time. Also as in mammals, we found a paternal germline mutation bias at later stages of gametogenesis (of 1.7 to 1) but no discernible difference between sexes in early development. We also examined recombination patterns, and found that the sex-averaged crossover rate on macro-chromosomes (1.05 cM/Mb) is again similar to values observed in mammals, as is the spatial distribution of crossovers, with a pronounced enrichment near telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes, sex-averaged crossover rates are substantially higher (4.21 cM/Mb), as expected from crossover homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer scale, recombination events overlap CpG islands more often than expected by chance, as expected in the absence of PRDM9. Despite differences in the mechanism by which recombination events are specified and the presence of many micro-chromosomes, estimates of the degree of GC-biased gene conversion (59%), the mean non-crossover conversion tract length (∼23 bp), and the non-crossover to crossover ratio (6.7:1) are all comparable to those reported in primates and mice. The conservation of mutation and recombination properties from zebra finch to mammals suggest that these processes have evolved under stabilizing selection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3