Sample Sequence Analysis Uncovers Recurrent Horizontal Transfers of Transposable Elements among Grasses

Author:

Park Minkyu1,Christin Pascal-Antoine2ORCID,Bennetzen Jeffrey L13

Affiliation:

1. Department of Genetics, University of Georgia, Athens, GA, USA

2. Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom

3. State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China

Abstract

Abstract Limited genome resources are a bottleneck in the study of horizontal transfer (HT) of DNA in plants. To solve this issue, we tested the usefulness of low-depth sequencing data generated from 19 previously uncharacterized panicoid grasses for HT investigation. We initially searched for horizontally transferred LTR-retrotransposons by comparing the 19 sample sequences to 115 angiosperm genome sequences. Frequent HTs of LTR-retrotransposons were identified solely between panicoids and rice (Oryza sativa). We consequently focused on additional Oryza species and conducted a nontargeted investigation of HT involving the panicoid genus Echinochloa, which showed the most HTs in the first set of analyses. The comparison of nine Echinochloa samples and ten Oryza species identified recurrent HTs of diverse transposable element (TE) types at different points in Oryza history, but no confirmed cases of HT for sequences other than TEs. One case of HT was observed from one Echinochloa species into one Oryza species with overlapping geographic distributions. Variation among species and data sets highlights difficulties in identifying all HT, but our investigations showed that sample sequence analyses can reveal the importance of HT for the diversification of the TE repertoire of plants.

Funder

Royal Society University Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3