Jackknife empirical likelihood: small bandwidth, sparse network and high-dimensional asymptotics

Author:

Matsushita Yukitoshi1,Otsu Taisuke2

Affiliation:

1. Graduate School of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan matsushita.y@r.hit-u.ac.jp

2. Department of Economics, London School of Economics, Houghton Street, London WC2A 2AE, U.K. t.otsu@lse.ac.uk

Abstract

Summary This article aims to shed light on inference problems for statistical models under alternative or nonstandard asymptotic frameworks from the perspective of the jackknife empirical likelihood. Examples include small-bandwidth asymptotics for semiparametric inference and goodness-of-fit testing, sparse-network asymptotics, many-covariates asymptotics for regression models, and many-weak-instruments asymptotics for instrumental variable regression. We first establish Wilks’ theorem for the jackknife empirical likelihood statistic in a general semiparametric inference problem under the conventional asymptotics. We then show that the jackknife empirical likelihood statistic may lose asymptotic pivotalness in the above nonstandard asymptotic frameworks, and argue that this phenomenon can be understood in terms of the emergence of Efron & Stein (1981)’s bias of the jackknife variance estimator at first order. Finally, we propose a modification of the jackknife empirical likelihood to recover asymptotic pivotalness under both conventional and nonstandard asymptotics. Our modification works for all of the above examples and provides a unified framework for investigating nonstandard asymptotic problems.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference35 articles.

1. Empirical likelihood in some semi-parametric models;Bertail;Bernoulli,2006

2. Subsampling bootstrap of count features of networks;Bhattacharyya,;Ann. Statist.,2015

3. A nonparametric view of network models and Newman-Girvan and other modularities;Bickel,;Proc. Nat. Acad. Sci.,2009

4. The method of moments and degree distributions for network models;Bickel,;Ann. Statist.,2011

5. On some global measures of the deviations of density function estimates;Bickel,;Ann. Statist.,1973

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3