A $C_p$ criterion for semiparametric causal inference

Author:

Baba Takamichi1,Kanemori Takayuki2,Ninomiya Yoshiyuki3

Affiliation:

1. Biostatistics Department, Shionogi & Co., Ltd, 1-1-4 Shibata, Kita-ku, Osaka 530-0012, Japan takamichi.baba@shionogi.co.jp

2. Client Service Department, The Toa Reinsurance Co., Ltd, 3-6 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8703, Japan Kanemori_T@toare.co.jp

3. Institute of Mathematics for Industry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan nino@imi.kyushu-u.ac.jp

Abstract

Summary For marginal structural models, which play an important role in causal inference, we consider a model selection problem within a semiparametric framework using inverse-probability-weighted estimation or doubly robust estimation. In this framework, the modelling target is a potential outcome that may be missing, so there is no classical information criterion. We define a mean squared error for treating the potential outcome and derive an asymptotic unbiased estimator as a $C_{p}$ criterion using an ignorable treatment assignment condition. Simulation shows that the proposed criterion outperforms a conventional one by providing smaller squared errors and higher frequencies of selecting the true model in all the settings considered. Moreover, in a real-data analysis we found a clear difference between the two criteria.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Posterior Covariance Information Criterion for Weighted Inference;Neural Computation;2023-06-12

2. Determination of the optimal number of strata for propensity score subclassification;Statistics & Probability Letters;2021-01

3. Downstream Effects of Upstream Causes;Journal of the American Statistical Association;2019-04-23

4. A test for the correct specification of marginal structural models;Statistics in Medicine;2019-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3