Posterior Covariance Information Criterion for Weighted Inference

Author:

Iba Yukito1,Yano Keisuke2

Affiliation:

1. The Institute of Statistical Mathematics, Tokyo 190-8562, Japan iba@ism.ac.jp

2. The Institute of Statistical Mathematics, Tokyo 190-8562, Japan yano@ism.ac.jp

Abstract

Abstract For predictive evaluation based on quasi-posterior distributions, we develop a new information criterion, the posterior covariance information criterion (PCIC). PCIC generalizes the widely applicable information criterion (WAIC) so as to effectively handle predictive scenarios where likelihoods for the estimation and the evaluation of the model may be different. A typical example of such scenarios is the weighted likelihood inference, including prediction under covariate shift and counterfactual prediction. The proposed criterion uses a posterior covariance form and is computed by using only one Markov chain Monte Carlo run. Through numerical examples, we demonstrate how PCIC can apply in practice. Further, we show that PCIC is asymptotically unbiased to the quasi-Bayesian generalization error under mild conditions in weighted inference with both regular and singular statistical models.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference27 articles.

1. Information theory and an extension of the maximum likelihood principle;Akaike,1973

2. A Cp criterion for semiparametric causal inference;Baba;Biometrika,2017

3. A general framework for updating brief distributions;Bissiri;Journal of the Royal Statistical Society: Series B (Statistical Methodology),2016

4. A semiparametric model selection criterion with applications to the marginal structural model;Brookhart;Computational Statistics and Data Analysis,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3