Semi-exact control functionals from Sard’s method

Author:

South L F1,Karvonen T2,Nemeth C3,Girolami M4,Oates C J5

Affiliation:

1. School of Mathematical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia

2. The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, U.K

3. Department of Mathematics and Statistics, Lancaster University, Bailrigg, Lancaster LA1 4YF, U.K

4. Department of Engineering, University of Cambridge, St Andrew’s Street, Cambridge CB2 1PZ, U.K

5. School of Mathematics, Statistics & Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K

Abstract

Summary A novel control variate technique is proposed for the post-processing of Markov chain Monte Carlo output, based on both Stein’s method and an approach to numerical integration due to Sard. The resulting estimators of posterior expected quantities of interest are proven to be polynomially exact in the Gaussian context, while empirical results suggest that the estimators approximate a Gaussian cubature method near the Bernstein–von Mises limit. The main theoretical result establishes a bias-correction property in settings where the Markov chain does not leave the posterior invariant. Empirical results across a selection of Bayesian inference tasks are presented.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference61 articles.

1. Zero-variance principle for Monte Carlo algorithms;Assaraf;Phys. Rev. Lett.,1999

2. Stein’s method and Poisson process convergence;Barbour;J. Appl. Prob.,1988

3. A Riemann-Stein kernel method;Barp;Bernoulli,2021

4. Variance reduction for Markov chains with application to MCMC;Belomestny;Statist. Comp.,2020

5. Empirical variance minimization with applications in variance reduction and optimal control;Belomestny,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Matérn Model: A Journey Through Statistics, Numerical Analysis and Machine Learning;Statistical Science;2024-08-01

2. Variance reduction for Metropolis–Hastings samplers;Statistics and Computing;2022-11-25

3. A Riemann–Stein kernel method;Bernoulli;2022-11-01

4. Optimal Thinning of MCMC Output;Journal of the Royal Statistical Society Series B: Statistical Methodology;2022-04-03

5. Scalable Control Variates for Monte Carlo Methods Via Stochastic Optimization;Springer Proceedings in Mathematics & Statistics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3